
Towards Network-level Efficiency for
Cloud Storage Services

Zhenhua Li
Tsinghua University
Peking University

lizhenhua1983@tsinghua.edu.cn

Cheng Jin
University of Minnesota

Twin Cities
cheng@cs.umn.edu

Tianyin Xu
University of California

San Diego
tixu@cs.ucsd.edu

Christo Wilson
Northeastern University

Boston, MA, US
cbw@ccs.neu.edu

Yao Liu
State University of New York

Binghamton University
yaoliu@cs.binghamton.edu

Linsong Cheng
Tsinghua University

Beijing, China
chengls10@mails.tsinghua.edu.cn

Yunhao Liu
Tsinghua University

Beijing, China
yunhao@tsinghua.edu.cn

Yafei Dai
Peking University

Beijing, China
dyf@pku.edu.cn

Zhi-Li Zhang
University of Minnesota

Twin Cities
zhzhang@cs.umn.edu

ABSTRACT
Cloud storage services such as Dropbox, Google Drive, and Mi-
crosoft OneDrive provide users with a convenient and reliable way
to store and share data from anywhere, on any device, and at any
time. The cornerstone of these services is the data synchronization
(sync) operation which automatically maps the changes in users’
local filesystems to the cloud via a series of network communica-
tions in a timely manner. If not designed properly, however, the
tremendous amount of data sync traffic can potentially cause (fi-
nancial) pains to both service providers and users.

This paper addresses a simple yet critical question: Is the cur-
rent data sync traffic of cloud storage services efficiently used?
We first define a novel metric named TUE to quantify the Traffic
Usage Efficiency of data synchronization. Based on both real-world
traces and comprehensive experiments, we study and characterize
the TUE of six widely used cloud storage services. Our results
demonstrate that a considerable portion of the data sync traffic is
in a sense wasteful, and can be effectively avoided or significant-
ly reduced via carefully designed data sync mechanisms. All in
all, our study of TUE of cloud storage services not only provides
guidance for service providers to develop more efficient, traffic-
economic services, but also helps users pick appropriate services
that best fit their needs and budgets.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Distributed Sys-
tems—Distributed applications; D.4.3 [Operating Systems]: File
Systems Management—Distributed file systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC’14, November 5–7, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-3213-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663716.2663747.

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Cloud storage service; network-level efficiency; data synchroniza-
tion; traffic usage efficiency

1. INTRODUCTION
Cloud storage services such as Dropbox, Google Drive, and Mi-

crosoft OneDrive (renamed from SkyDrive since Feb. 2014) pro-
vide users with a convenient and reliable way to store and share
data from anywhere, on any device, and at any time. The users’ da-
ta (e.g., documents, photos, and music) stored in cloud storage are
automatically synchronized across all the designated devices (e.g.,
PCs, tablets, and smartphones) connected to the cloud in a timely
manner. With multiplicity of devices – especially mobile devices
– that users possess today, such “anywhere, anytime” features sig-
nificantly simplify data management and consistency maintenance,
and thus provide an ideal tool for data sharing and collaboration.

In a few short years, cloud storage services have reached phe-
nomenal levels of success, with the user base growing rapidly. For
example, Microsoft OneDrive claims that over 200 million cus-
tomers have stored more than 14 PB of data using their service [9],
while Dropbox has claimed more than 100 million users who store
or update 1 billion files every day [6]. Despite the late entry into
this market (in Apr. 2012), Google Drive obtained 10 million users
just in its first two months [7].

The key operation of cloud storage services is data synchroniza-
tion (sync) which automatically maps the changes in users’ local
filesystems to the cloud via a series of network communications.
Figure 1 demonstrates the general data sync principle. In a cloud
storage service, the user usually needs to assign a designated lo-
cal folder (called a “sync folder”) in which every file operation is
noticed and synchronized to the cloud by the client software de-
veloped by the service provider. Synchronizing a file involves a
sequence of data sync events, such as transferring the data index,
data content, sync notification, sync status/statistics, and sync ac-
knowledgement. Naturally, each data sync event incurs network
traffic. In this paper, this traffic is referred to as data sync traffic.

Client

User

Data Sync Event
(data index, data content,

sync notification, ...)

File Operation
(file creation, file deletion,

file modification, ...)

Cloud

Figure 1: Data synchronization principle.

If not designed properly, the amount of data sync traffic can
potentially cause (financial) pains to both providers and users of
cloud storage services. From the providers’ perspective, the aggre-
gate sync traffic from all users is enormous (given the huge number
of files uploaded and modified each day!). This imposes a heavy
burden in terms of infrastructure support and monetary costs (e.g.,
as payments to ISPs or cloud infrastructure providers). To get a
quantitative understanding, we analyze a recent large-scale Drop-
box trace [12] collected at the ISP level [25]. The analysis reveals:
(1) The sync traffic contributes to more than 90% of the total ser-
vice traffic. Note that the total service traffic is equivalent to one
third of the traffic consumed by YouTube [25]; (2) Data synchro-
nization of a file (sometimes a batch of files) generates 2.8 MB of
inbound (client to cloud) traffic and 5.18 MB of outbound (cloud
to client) traffic on average. According to the Amazon S3 pricing
policy [1] (Dropbox stores all the data content in S3 and S3 only
charges for outbound traffic), the Dropbox traffic would consume
nearly $0.05/GB × 5.18 MB × 1 billion = $260,000 every day1.
These costs grow even further when we consider that all cloud stor-
age service providers must bear similar costs, not just Dropbox [4].

Data sync traffic can also bring considerable (and unexpected) fi-
nancial costs to end users, despite that basic cloud storage services
are generally free. News media has reported about user complaints
of unexpected, additional charges from ISPs, typically from mobile
users with limited data usage caps [8, 2]. As a consequence, some
users have warned: “Keep a close eye on your data usage if you
have a mobile cloud storage app.” In addition, some cloud stor-
age applications (e.g., large data backup [3]) are also impaired by
the bandwidth constraints between the user clients and the cloud.
This limitation is regarded as the “dirty secrets” of cloud storage
services [5]. Hence users likewise would also benefit from more
efficient sync traffic usage.

This paper addresses a simple yet critical question: Is the current
data sync traffic of cloud storage services efficiently used? Our goal
is to quantify and optimize the efficiency of data sync traffic usage,
i.e., the pivotal network-level efficiency for cloud storage services.
Without impairing user experience, providers would like to limit
data sync traffic as much as possible to reduce operational costs. On
the other side, users also desire more efficient traffic usage, which
can save money and result in better quality of experience. Although
several studies have measured cloud storage services [30, 33, 25,
20, 24, 36, 32, 48], none have addressed the issue of sync traffic
efficiency using real-world, large-scale data from multiple cloud
storage services.

1We assume that there is no special pricing contract between Drop-
box and Amazon S3, so our calculation of the traffic costs may
involve potential overestimation.

To answer the question thoroughly, we first define a novel metric
named TUE to quantify the Traffic Usage Efficiency of data syn-
chronization. Borrowing a term similar to PUE (i.e., the Power Us-
age Effectiveness = Total facility power

IT equipment power [14], a widely adopted metric
for evaluating the cloud computing energy efficiency), we define

TUE =
Total data sync traffic

Data update size
. (1)

When a file is updated (e.g., created, modified, or deleted) at the us-
er side, the data update size denotes the size of altered bits relative
to the cloud-stored file 2. From the users’ point of view, the data up-
date size is an intuitive and natural signifier about how much traffic
should be consumed. Compared with the absolute value of sync
traffic (used in previous studies), TUE better reveals the essential
traffic harnessing capability of cloud storage services.

In order to gain a practical and in-depth understanding of TUE,
we collect a real-world user trace and conduct comprehensive bench-
mark experiments of six widely used cloud storage services, in-
cluding Google Drive, OneDrive, Dropbox, Box, Ubuntu One, and
SugarSync. We examine key impact factors and design choices that
are common across all of these services. Impact factors include file
size, file operation, data update size, network environment, hard-
ware configuration, access method, and so on. Here the “access
method” refers to PC client software, web browsers, and mobile
apps. Design choices (of data sync mechanisms) include data sync
granularity, data compression level, data deduplication granularity,
and sync deferment (for improved batching).

By analyzing these factors and choices, we are able to thoroughly
unravel the TUE related characteristics, design tradeoffs, and opti-
mization opportunities of these state-of-the-art cloud storage ser-
vices. The major findings in this paper and their implications are
summarized as follows:

• The majority (77%) of files in our collected trace are smal-
l in size (less than 100 KB). Nearly two-thirds (66%) of
these small files can be logically combined into larger files
for batched data sync (BDS) in order to reduce sync traffic.
However, only Dropbox and Ubuntu One have partially im-
plemented BDS so far.

• The majority (84%) of files are modified by users at least
once. Unfortunately, most of today’s cloud storage services
are built on top of RESTful infrastructure (e.g., Amazon S3,
Microsoft Azure, and OpenStack Swift) that typically only
support data access operations at the full-file level [26, 17].
For these services, enabling the efficient incremental data
sync (IDS) mechanism requires an extra mid-layer for trans-
forming MODIFY into GET + PUT + DELETE file operations.
Given that file modifications frequently happen, implement-
ing IDS is worthwhile for improved network-level efficiency.

• 52% of files can be effectively compressed and 18% of files
can be deduplicated. Nevertheless, Google Drive, OneDrive,
Box, and SugarSync never compress or deduplicate data. Even
for Dropbox and Ubuntu One, the effect of compression and
deduplication is largely influenced by the access method.

• Implementing compression and block-level deduplication to-
gether is technically challenging. Based on our trace analy-
sis, we suggest providers to implement compression and full-
file deduplication because the combination of these two tech-
niques is sufficient to provide efficient usage of sync traffic.

2If data compression is utilized by the cloud storage service, the
data update size denotes the compressed size of altered bits.

• Frequent modifications to a file often lead to large TUE. For
instance, for 8.5% of Dropbox users, more than 10% of their
sync traffic is caused by frequent modifications [36]. Some
services deal with this issue by batching file updates using
a fixed sync deferment. However, fixed sync deferments are
inefficient in some scenarios. We propose an adaptive sync
defer (ASD) mechanism to overcome this limitation.

• In the presence of frequent file modifications, surprisingly,
users with relatively “poor” hardware or Internet access save
on sync traffic, because their file updates are naturally batched.

In a nutshell, our research findings demonstrate that for today’s
cloud storage services, a considerable portion of the data sync traf-
fic is in a sense wasteful, and can be effectively avoided or signif-
icantly reduced through carefully designed data sync mechanisms.
In other words, there is plenty of space for optimizing the network-
level efficiency of these services. Our study of TUE provides guid-
ance in two folds: (1) help service providers develop more efficient,
traffic-economic cloud storage services; and (2) help end users se-
lect appropriate services that best fit their needs and budgets.

Roadmap. In the remainder of the paper, we first describe the
common design framework of cloud storage services in § 2, and
then introduce our research methodology in § 3. Next, we present
research results and findings, broken down logically into three ar-
eas: simple file operations (§ 4), compression and deduplication
(§ 5), and frequent file modifications (§ 6). Finally, we discuss
the tradeoffs for cloud storage system design in § 7, review related
work in § 8, and conclude the paper with future work in § 9.

2. COMMON DESIGN FRAMEWORK OF
CLOUD STORAGE SERVICES

From the perspective of sync traffic usage, the common design
framework of cloud storage services involves a number of impact
factors and design choices, which can be on the client side, serv-
er (cloud) side, or network side. The impact factors refer to those
(objective) factors such as the client location, hardware, file size,
data update size, network environment, and so on that must be ac-
counted for in the design and usage of cloud storage services. The
design choices (of data sync mechanisms) refer to those (subjec-
tive) design decisions which the system designers make, such as
the data sync granularity, data compression level, data deduplica-
tion granularity, and so forth.

Both the impact factors and design choices may influence the
data sync TUE. To avoid being trapped by trivial or elusive issues,
we select key impact factors and design choices according to the
following two rules:

• Rule 1: The impact factors should be relatively constant or
stable, so that our research results can be easily repeated.

• Rule 2: The design choices should be measurable and ser-
vice/implementation independent, so as to make our research
methodology widely applicable.

Following Rule 1, we do not study impact factors such as sync
delay3, cloud server location, etc. For example, we observe that
uploading a 1-MB JPEG photo to Google Drive may incur an elu-
sive sync delay varying between several seconds and several min-
utes (under different network environments). Instead, we choose
to study the sync traffic, which is almost invariable in all cases.
3Sync delay measures how long the user client synchronizes a file
to the cloud.

Table 1: Key impact factors and design choices.

Client side Client location Client hardware
Access method File size File operation

Data update size Data update rate
Data compression level Sync deferment

Server side Data sync granularity
Data deduplication granularity

(Data compression level) *

Network side Sync traffic Bandwidth Latency
* Note: The server-side data compression level may be differ-

ent from the client-side data compression level.

Besides, we observe that the cloud server location serving a given
file is not constant. This is because a cloud storage service usual-
ly hosts a user’s files across multiple geographically dispersed data
centers, and it often migrates or copies a file from one cloud serv-
er to another. Instead, we record the bandwidth and delay between
the client and the cloud, as they can be reproduced using client-side
methods (introduced in § 3.2).

Following Rule 2, we do not consider design choices such as the
metadata structures, file segmentation and replication on the cloud
side, because they require specific knowledge of the back-end cloud
implementation. For example, the metadata structure (including the
list of the user’s files, their attributes, and indices to where the files
can be found inside the cloud) cannot be extracted from the net-
work communication packets, because almost all the commercial
cloud storage services have encrypted their application-layer data
in certain (unknown) ways.

In the end, ten key impact factors and four design choices are
selected, as listed in Table 1. Some of them are self-explanatory or
have been explained before. Below we further explain a few:

• File operation includes file creation, file deletion, file modi-
fication, and frequent file modifications.

• Data update rate denotes how often a file operation happens.

• Sync deferment. When frequent file modifications happen,
some cloud storage services intentionally defer the sync pro-
cess for a certain period of time for batching file updates.

• Data sync granularity. A file operation is synchronized to
the cloud either in a full-file granularity or in an incremen-
tal, chunk-level granularity. When the former is adopted, the
whole updated file is delivered to the cloud; when the lat-
ter is adopted, only those file chunks that contain altered bits
(relative to the file stored in the cloud) are delivered.

• Data deduplication granularity denotes the unit at which da-
ta fingerprints are computed and compared to avoid deliver-
ing duplicate data units to the cloud. The unit can be either
a full file or a file block. Note that data deduplication can be
performed across different files owned by different users.

• Bandwidth is defined as the peak upload rate between the
client and the cloud server. We measure it by uploading a
large file to the cloud and meanwhile recording the network
traffic with the Wireshark network protocol analyzer [18].

• Latency is defined as the round trip time (RTT) between the
client and the cloud. We measure it by using the standard
Ping command.

Table 2: Number of users and files recorded in our collected cloud storage trace.

Google Drive OneDrive Dropbox Box Ubuntu One SugarSync
Number of users 33 24 55 13 13 15
Number of files 32677 17903 106493 19995 27281 18283

Table 3: File attributes recorded in our collected trace.
User name File name MD5 Original file size

Compressed file size Creation time Last modification time
Full-file MD5 128 KB/256 KB/512 KB/1 MB/2 MB/4 MB/

8 MB/16 MB block-level MD5 hash codes

 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0 20 40 60 80 100

C
D

F

File Size (MB)

Compressed
Original

Figure 2: CDF (cumulative distribution function) of 1) original
file size and 2) compressed file size, corresponding to our col-
lected trace. For original files, the maximum size is 2.0 GB, the
average size is 962 KB, and the median size is 7.5 KB. For com-
pressed files, the maximum size is 1.97 GB, the average size is
732 KB, and the median size is 3.2 KB. Clearly, the tracked files
can be effectively compressed on the whole, and the majority of
them are small in size.

3. METHODOLOGY
This section describes our methodology for studying the TUE

of cloud storage services. First, we introduce a real-world cloud
storage trace collected to characterize the key impact factors. Next,
we design a variety of benchmark experiments to uncover the key
design choices of data sync mechanisms. Last but not the least, we
provide an overview of the research results.

3.1 Real-world Cloud Storage Trace
Our measurement study takes advantage of a real-world user

trace of cloud storage services. It is collected in several univer-
sities and companies in the US and China from Jul. 2013 to Mar.
2014, including 153 long-term users with 222,632 files inside their
sync folders. Refer to Table 2 for the per service statistics. This
trace is used to characterize the key impact factors with regard to
the six widely used services. It is also used to guide the design
of benchmark experiments and enable further macro-level analysis
(in particular, the TUE related optimization opportunities of cloud
storage services).

This cloud storage trace records detailed information of every
tracked file in multiple aspects. Table 3 lists the concrete file at-
tributes recorded. Figure 2 depicts the distributions of original file
size and compressed file size corresponding to the trace. We have
made this trace publicly available to benefit other researchers. It
can be downloaded via the following link:

http://www.greenorbs.org/people/lzh/public/traces.zip .

3.2 Benchmark Experiments
To obtain an in-depth understanding of TUE and the key design

choices of data sync mechanisms, we design a variety of bench-
marks for performing comprehensive controlled experiments. The
benchmarks span multiple commercial cloud storage services, in-
volving diverse client machines locating at distinct locations and
network environments.

Cloud storage services. Among today’s dozens of commer-
cial cloud storage services, our research focuses on the following
six mainstream services: Google Drive, OneDrive, Dropbox, Box,
Ubuntu One, and SugarSync, as they are either the most popular
(in terms of user base) or the most representative (in terms of da-
ta sync mechanism). Other cloud storage services are also briefly
discussed when necessary.

Client locations. Since the above cloud storage services are main-
ly deployed in the US, we select two distinct locations to perfor-
m each experiment: MN (i.e., Minnesota, US) and BJ (i.e., Bei-
jing, China). In a coarse-grained manner, MN represents a lo-
cation close to the cloud: the bandwidth is nearly 20 Mbps and
the latency ∈ (42, 77) msec, while BJ represents a location re-
mote from the cloud: the bandwidth is nearly 1.6 Mbps the latency
∈ (200, 480) msec.

Controlled bandwidth and latency. To tune the network environ-
ment in a fine-grained manner, we interpose a pair of packet filters
in the communication channel between the client and the cloud in
MN. These filters enable fine-grained adjustment of the bandwidth
(the maximum possible speed is 20 Mbps) and latency in either di-
rection. Specifically, the packet filters are interposed by using an
intermediate proxy that runs the Linux Netfilter/Iptables tool, thus
behaving like a common software firewall.

Controlled file operations. We synthetically generate almost
all kinds of file operations appearing in the literature. Moreover,
these operations are applied upon both compressed and compress-
ible files. These controlled file operations will be elaborated in § 4,
§ 5, and § 6.

Client machine hardware. A total of eight client machines are
employed in the experiments: four in MN (i.e., M1, M2, M3, and
M4) and four in BJ (i.e., B1, B2, B3, and B4). Their detailed hard-
ware information is listed in Table 4. M1/B1 represents a typical
client machine at the moment, M2/B2 an outdated machine, M3/B3
an advanced machine with SSD storage, and M4/B4 an Android s-
martphone. M1–M3 and B1–B3 are installed with Windows 7-SP1
and the Chrome-30.0 web browser.

Benchmark software and access methods. For each cloud s-
torage service, all the experiments regarding M1–M3 and B1–B3
are performed with the latest version (as of Jan. 2014) of the client
software on Windows 7. For the M4 and B4 smartphones, we ex-
periment with the latest-version Android apps (as of Jan. 2014).
The corresponding sync traffic (i.e., incoming/outgoing packets)
are recorded using Wireshark. For the Android smartphones, we
route the network traffic through a PC that promiscuously monitors
the packets using Wireshark.

http://www.greenorbs.org/people/lzh/public/traces.zip

Table 4: Hardware information of the experimental client machines.

Machine CPU Memory Disk Storage
M1 @ MN Quad-core Intel i5 @ 1.70 GHz 4 GB 7200 RPM, 500 GB
M2 @ MN Intel Atom @ 1.00 GHz 1 GB 5400 RPM, 320 GB
M3 @ MN Quad-core Intel i7 @ 1.90 GHz 4 GB SSD, 250 GB
M4 @ MN Dual-core ARM @ 1.50 GHz 1 GB MicroSD, 16 GB
B1 @ BJ Quad-core Intel i5 @ 1.70 GHz 4 GB 7200 RPM, 500 GB
B2 @ BJ Intel Atom @ 1.00 GHz 1 GB 5400 RPM, 250 GB
B3 @ BJ Quad-core Intel i7 @ 1.90 GHz 4 GB SSD, 250 GB
B4 @ BJ Dual-core ARM @ 1.53 GHz 1 GB MicroSD, 16 GB

Table 5: Our major findings, their implications, and locations of relevant sections.

Simple File Operations Implications

Section 4.1 (File creation): The majority (77%) of files in our trace
are small in size (<100 KB), which may result in poor TUE.

For providers, nearly two thirds (66%) of small files can be logical-
ly combined into larger files for batched data sync (BDS). Howev-
er, only Dropbox and Ubuntu One have partially implemented BDS
so far.

Section 4.2 (File deletion): Deletion of a file usually incurs negli-
gible sync traffic. For users, no need to worry about the traffic for file deletion.

Section 4.3 (File modification): The majority (84%) of files are
modified by users at least once. Most cloud storage services em-
ploy full-file sync, while Dropbox and SugarSync utilize incremen-
tal data sync (IDS) to save traffic for PC clients (but not for mobile
or web-based access methods).

Most of today’s cloud storage services are built on top of RESTful
infrastructure (e.g., Amazon S3, Microsoft Azure, and OpenStack
Swift) that only support data access operations at the full-file lev-
el. TUE can be significantly improved by implementing IDS with
an extra mid-layer that transforms MODIFY into GET + PUT +
DELETE file operations.

Compression and Deduplication Implications
Section 5.1 (Data compression): 52% of files can be effectively
compressed. However, Google Drive, OneDrive, Box, and Sug-
arSync never compress data, while Dropbox is the only one that
compresses data for every access method.

For providers, data compression is able to reduce 24% of the to-
tal sync traffic. For users, PC clients are more likely to support
compression versus mobile or web-based access methods.

Section 5.2 (Data deduplication): Although we observe that 18%
of files can be deduplicated, most cloud storage services do not
support data deduplication, especially for the web-based access
method.

For providers, implementing compression and block-level dedupli-
cation together is technically challenging. Based on the trace anal-
ysis, we suggest providers implement compression and full-file d-
eduplication since the two techniques work together seamlessly.

Frequent File Modifications Implications
Section 6.1 (Sync deferment): Frequent modifications to a file of-
ten lead to large TUE. Some services deal with this issue by batch-
ing file updates using a fixed sync deferment. However, we find
that fixed sync deferments are inefficient in some scenarios.

For providers, we demonstrate that an adaptive sync defer (ASD)
mechanism that dynamically adjusts the sync deferment is superior
to fixed sync deferment.

Section 6.2 (Network and hardware): Suprisingly, we observe that
users with relatively low bandwidth, high latency, or slow hardware
save on sync traffic, because their file updates are naturally batched
together.

For users, in the presence of frequent file modifications, today’s
cloud storage services actually bring good news (in terms of TUE)
to those users with relatively “poor” hardware or Internet access.

3.3 Overview of Our Major Findings
Based on the above methodology, we are able to thoroughly un-

ravel the TUE relevant characteristics, design tradeoffs, and op-
timization opportunities of the six mainstream cloud storage ser-
vices. The detailed research results (from simple to complex) will
be presented in the following three sections: simple file operations
(§ 4), compression and deduplication (§ 5), and frequent file modifi-
cations (§ 6). As an overview and a roadmap of our research results,
Table 5 summarizes the major findings and their implications.

4. SIMPLE FILE OPERATIONS
This section presents our major measurement results, findings,

and implications on the TUE of simple file operations. For each
measurement, we first introduce the experiment process and result-

s, and then unravel several interesting findings and implications. In
this section, we do not mention the client locations, network envi-
ronments, and hardware configurations, because the TUE of simple
file operations is independent to these impact factors.

4.1 File Creation
[Experiment 1] : We first study the simple case of creating a high-
ly compressed file of Z bytes inside the sync folder (we will further
study the data compression in detail in § 5.1). Thereby, calculat-
ing the TUE of file creation becomes straightforward (i.e., TUE
= Total sync traffic

Z bytes). According to Figure 2, most compressed files are
small in size (several KBs), and the maximum compressed file size
is below 2.0 GB. Therefore, we experiment with

Z ∈ {1, 1 K, 10 K, 100 K, 1 M, 10 M, 100 M, 1 G}.

Table 6: Sync traffic of a (compressed) file creation.

Service PC client sync traffic (Bytes) Web-based sync traffic (Bytes) Mobile app sync traffic (Bytes)
1 1 K 1 M 10 M 1 1 K 1 M 10 M 1 1 K 1 M 10 M

Google Drive 9 K 10 K 1.13 M 11.2 M 6 K 7 K 1.06 M 10.6 M 32 K 71 K 1.27 M 11.0 M
OneDrive 19 K 20 K 1.14 M 11.4 M 28 K 31 K 1.11 M 11.7 M 29 K 44 K 1.23 M 10.7 M
Dropbox 38 K 40 K 1.28 M 12.5 M 31 K 37 K 1.09 M 10.6 M 18 K 32 K 1.08 M 10.9 M
Box 55 K 47 K 1.10 M 10.6 M 55 K 58 K 1.10 M 10.5 M 16 K 34 K 1.29 M 10.8 M
Ubuntu One 2 K 3 K 1.11 M 11.2 M 37 K 39 K 1.20 M 11.3 M 20 K 24 K 1.08 M 10.9 M
SugarSync 9 K 19 K 1.17 M 11.4 M 31 K 32 K 1.10 M 10.7 M 31 K 47 K 1.22 M 10.9 M

Table 7: Total traffic for synchronizing 100 compressed file creations. Each file is 1 KB in size.

Service PC client Web-based Mobile app
Sync traffic (TUE) Sync traffic (TUE) Sync traffic (TUE)

Google Drive 1.1 MB (11) 1.2 MB (12) 5.6 MB (56)
OneDrive 1.3 MB (13) 2.2 MB (22) 1.9 MB (19)
Dropbox 120 KB (1.2) 600 KB (6.0) 360 KB (3.6)
Box 1.2 MB (12) 3.2 MB (32) 3.2 MB (32)
Ubuntu One 140 KB (1.4) 500 KB (5.0) 2.5 MB (25)
SugarSync 0.9 MB (9) 4.0 MB (40) 1.5 MB (15)

The second goal of Experiment 1 is to get a quantitative un-
derstanding of the overhead traffic, as TUE heavily depends on
the ratio of the overhead traffic over the total sync traffic. Syn-
chronizing a file to the cloud always involves a certain amount of
overhead traffic, which arises from TCP/HTTP(S) connection setup
and maintenance, metadata delivery, etc. Specifically, the overhead
traffic is equal to the total sync traffic excluding the payload traffic
for delivering the file content, so in Experiment 1,

Overhead traffic ≈ Total sync traffic - Z bytes.

Table 6 lists the results of Experiment 1 regarding the six con-
cerned cloud storage services. We vary the file size from 1 B to
1 GB, but for brevity only list four typical sizes: 1 B, 1 KB, 1 MB,
and 10 MB. The table records the sync traffic generated by the three
typical service access methods: PC client, web (browser) based,
and mobile app. In general, from Table 6 we have the following
finding and implication:

• TUE for synchronizing a (compressed) file creation mainly
depends on the file size. A small file results in big TUE up
to 40000, while a big file incurs small TUE approaching 1.0.
Therefore, for providers, a number of small files can be log-
ically combined into a moderate-size file for batched data
sync (BDS) to save traffic, in particular the overhead traffic.

This finding poses a key question: What is a small size and what
is a moderate size? By plotting the TUE vs. File Size relationship
(for PC clients) in Figure 3, we get an intuitive conclusion that
a moderate size should be at least 100 KB and had better exceed 1
MB, in order to achieve small TUE – at most 1.5 and had better stay
below 1.2. Here we only draw the curve for PC clients since the
corresponding curves for web-based and mobile apps are similar.

As a consequence, small size is regarded as less than 100 KB,
which together with Figure 2 reveals that the majority (77%) of
tracked files are small in size (meanwhile, 81% in terms of com-
pressed size). More importantly, by analyzing our collected trace,
we find that nearly two-thirds (66%) of these small files can be cre-
ated in batches and thus can effectively benefit from BDS.

[Experiment 1’] : Given that the BDS mechanism can effectively
optimize TUE, a new question comes out: Is BDS adopted by the

 0

 10

 20

 30

 40

 50

1K 5K 10K 100K 250K 0.5M 1M 10M

T
U

E

Size of the Created File (Bytes)

Google Drive
OneDrive
Dropbox

Box
Ubuntu One
SugarSync

Figure 3: TUE vs. Size of the created file.

six mainstream cloud storage services? To get the answer, we first
generate 100 (distinct) highly compressed files, and then move all
of them into the sync folder in a batch. Each file is 1 KB in size,
so TUE = Total sync traffic

100 KB . If BDS is adopted, the total sync traffic
should be around 100 KB and TUE should be close to 1.0.

The results of Experiment 1’ listed in Table 7 reveal that Drop-
box and Ubuntu One have adopted BDS for PC clients. Further, it
is possible that Dropbox has adopted BDS for web-based and mo-
bile access methods, because the corresponding sync traffic (600
KB and 360 KB) is within an order of magnitude of the data up-
date size (100 KB). Also, Ubuntu One may have used BDS in its
web-based data synchronization, since the sync traffic (500 KB)
lies between 600 KB and 360 KB. On the contrary, Google Drive,
OneDrive, Box, and SugarSync have not adopted BDS yet.

4.2 File Deletion
[Experiment 2] : Each file created in Experiment 1 is deleted
after it is completely synchronized to the cloud, so as to acquire the
sync traffic information of a file deletion.

The Experiment 2 results indicate that deletion of a file usual-
ly generates negligible (< 100 KB) sync traffic, regardless of the
cloud storage service, file size, or access method. The reason is s-
traightforward: when a file f is deleted in the user’s local sync fold-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1K 10K 100K 1M

S
y
n
c
 T

ra
ff
ic

 (
M

B
)

Size of the Modified File (Bytes)

(a) PC client

Google Drive
OneDrive
Dropbox

Box
Ubuntu One
SugarSync

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1K 10K 100K 1M

S
y
n
c
 T

ra
ff
ic

 (
M

B
)

Size of the Modified File (Bytes)

(b) Web-based

Google Drive
OneDrive
Dropbox

Box
Ubuntu One
SugarSync

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1K 10K 100K 1M

S
y
n
c
 T

ra
ff
ic

 (
M

B
)

Size of the Modified File (Bytes)

(c) Mobile app

Google Drive
OneDrive
Dropbox

Box
Ubuntu One
SugarSync

Figure 4: Sync traffic of a random byte modification, corresponding to the three typical service access methods: (a) PC client, (b)
Web-based, and (c) Mobile app. By comparing the three subfigures, we discover that only the PC clients of Dropbox and SugarSync
utilize the incremental data sync (IDS) mechanism for improved network-level efficiency.

er, the user client just notifies the cloud to change some attributes of
f rather than remove the content of f . In fact, such “fake deletion”
also facilitates users’ data recovery, such as the version rollback of
a file. Naturally, we get the following implication:

• Cloud storage service users do not need to worry about the
sync traffic when deleting a file.

4.3 File Modification and Sync Granularity
[Experiment 3] : The analysis of our collected cloud storage trace
reveals that the majority (84%) of files are modified by users at
least once. That is to say, file modifications are frequently made by
cloud storage users. This subsection studies a simple case of file
modification, i.e., modifying a random byte in a compressed file of
Z bytes inside the sync folder. In this case, TUE = Total sync traffic

1 Byte .
Similar as § 4.1, we experiment with

Z ∈ {1, 1 K, 10 K, 100 K, 1 M, 10 M, 100 M, 1 G}
and plot the sync traffic of four typical sizes: Z = 1 K, 10 K, 100 K,
and 1 M in Figure 4.

Figure 4 shows that today’s cloud storage services generally u-
tilize two kinds of data sync granularity: 1) full-file and 2) chunk-
level. Accordingly, their data sync mechanisms are classified into
full-file sync and incremental sync as follows:

• Full-file sync. Google Drive is an example to use the full-
file sync mechanism. When a random byte is modified in a
Z-byte compressed file, the resulting sync traffic is almost
the same as that of creating a new Z-byte compressed file.
In other words, Google Drive deals with each file modifi-
cation by simply uploading the full content of the modified
file to the cloud and then deleting the old file. Consequent-
ly, Google Drive is more suitable for hosting media files
(like photos, music, and videos) which are rarely modified
by users. The full-file sync mechanism is also employed
by OneDrive, Box, Ubuntu One, Amazon Cloud Drive, and
some popular cloud storage services in China like Kuaipan,
Kanbox, Baidu CloudDisk, and 115 CloudDisk.

• Incremental sync (or delta sync). Dropbox (PC client) is
an example to use the incremental data sync (IDS) mecha-
nism. When a random byte modification happens, the result-
ing sync traffic stays around 50 KB, regardless of the size of
the modified file. According to the working principle of the
incremental sync algorithm: rsync [16], once a random byte
is changed in a file f , in most cases the whole data chunk
that contains this byte must be delivered for synchronizing
f . Therefore, the sync granularity (i.e., the chunk size C)
can be approximately estimated as

C ≈ Total sync traffic− Overhead traffic.

From the Experiment 1 results, we understand that the overhead
traffic of synchronizing a one-byte file with the Dropbox PC client
is nearly 40 KB. Therefore, the data sync granularity of Dropbox
PC client is estimated as: C ≈ 50 KB −40 KB = 10 KB. This
is further validated by the recommended default chunk size (i.e.,
from 700 B to 16 KB) in the original rsync implementation [15].
Moreover, we find that SugarSync, IDriveSync, and 360 CloudDisk
also utilize the IDS mechanism for their PC clients.

On the contrary, as depicted in Figure 4 (b) and 4 (c), web-based
apps and mobile apps for all the six services still use the full-file
sync mechanism, probably because IDS is hard to implement in
JavaScript (for web-based apps) or due to energy concerns (for mo-
bile apps). Specifically, JavaScript is the most widely used script
language for the development of web-based apps (including cloud
storage apps). Nevertheless, for security concerns, JavaScript is
unable to directly invoke file-level system calls/APIs like open,
close, read, write, stat, rsync, and gzip [11]. Instead, JavaScrip-
t can only access users’ local files in an indirect and constrained
manner, which is of less efficiency in terms of implementing IDS.

In summary, we have the following finding about simple file
modification and the data sync granularity:

• When a file modification is synchronized to the cloud, TUE
is mostly affected by the data sync granularity which varies
significantly among different cloud storage services. Most
services simply use full-file sync, but some services (like
Dropbox and SugarSync) utilize IDS to achieve improved
network-level efficiency for PC clients.

Conflicts between IDS and RESTful infrastructure. Although
enabling the IDS mechanism can help service providers reduce the
data sync traffic, implementing IDS is not an easy job in practice.
Most of today’s cloud storage services (e.g., OneDrive, Dropbox,
and Ubuntu One) are built on top of RESTful infrastructure (e.g.,
Amazon S3, Microsoft Azure, and OpenStack Swift). For simplify-
ing both the providers’ implementation complexities and the devel-
opers’ programming complexities, RESTful infrastructure typically
only supports data access operations at the full-file level, like PUT
(upload a new file), GET (download a whole file), DELETE (delete
a whole file), and so forth. Note that the PUT, GET, and DELETE
operations may have aliases in other RESTful infrastructure.

Thus, enabling IDS usually requires an extra mid-layer for trans-
forming MODIFY into GET + PUT + DELETE file operations in an
efficient manner (like what Dropbox has done [25, 36]) 4. Since file
modifications frequently happen, implementing such a mid-layer is
worthwhile for improved network-level efficiency.
4An alternative to enable IDS is to store every chunk of a file as a
separate data object. When a file is modified, the modified chunks
are deleted with the new chunks being stored as new objects; also,
file metadata has to be updated (as what is used in Cumulus [43]).

Table 8: Sync traffic of a 10-MB text file creation. UP: The user
uploads the file to the cloud. DN: The user downloads the file
from the cloud.

Service
Sync traffic (MB)

PC client Web-based Mobile app
UP DN UP DN UP DN

Google Drive 11.3 11.0 10.6 11.7 11.8 10.8
OneDrive 11.4 11.2 11.0 11.0 12.2 10.7
Dropbox 6.1 5.5 10.6 5.5 8.1 5.5
Box 10.6 11.2 10.5 11.3 10.4 11.1
Ubuntu One 5.6 5.3 10.9 5.3 8.6 10.6
SugarSync 11.3 11.5 10.4 10.7 11.6 11.8

5. COMPRESSION AND DEDUPLICATION
In a real-world storage system, compression and deduplication

are the two most commonly used techniques for saving space and
traffic. This section makes a detailed study of cloud storage com-
pression and deduplication, from both the system designers’ and
users’ perspectives.

5.1 Data Compression Level
[Experiment 4] : To study whether data updates are compressed
before they are synchronized to the cloud, we create an X-byte tex-
t file inside the sync folder. As a small file is hard to compress,
we experiment with X = 1 M, 10 M, 100 M, and 1 G. Each tex-
t file is filled with random English words. If data compression is
actually used, the resulting sync traffic should be much less than
the original file size. Furthermore, after each text file is complete-
ly synchronized, we download it from the cloud with a PC client,
a web browser, and a mobile app, respectively, so as to examine
whether the cloud delivers data updates in a compressed form.

As a typical case, the Experiment 4 results corresponding to
a 10-MB text file are listed in Table 8. First, in the file upload
(UP) phase, among the six mainstream cloud storage services, on-
ly Dropbox and Ubuntu One compress data with PC clients and
mobile apps. No service ever compresses data with web browser-
s. Further, we observe that the 10-MB text file can be compressed
to nearly 4.5 MB using the highest-level WinZip compression on
our desktop. Thus, for Dropbox and Ubuntu One, the compression
level with PC clients seems moderate, while the compression level
with mobile apps is quite low. The motivation of such a difference
is intuitive: to reduce the battery consumption of mobile devices
caused by the computation-intensive data compressions.

Next, in the file download (DN) phase, only Dropbox and Ubun-
tu One compress data with PC clients and web browsers, and the
compression level is higher than that in the file upload phase. For
mobile apps, only Dropbox compresses data.

By analyzing our collected cloud storage trace, we find that 52%
of files can be effectively compressed. Here “effectively compressed”
implies that Compressed file size

Original file size < 90% when the highest-level WinZip
compression is applied. As a result, the total compression ratio
(= Size of data before compression

Size of data after compression) regarding all the files recorded in the
trace reaches 1.31. In other words, data compression is able to re-
duce 24% of the data sync traffic (compared with no compression).
These observations lead to the following findings and implications:

• Data compression provides obvious benefits by reducing the
sync traffic, but is not supported by every cloud storage ser-
vice. Google Drive, OneDrive, Box, and SugarSync never

Algorithm 1 : Iterative Self Duplication Algorithm
1: Set the lower bound: L = 0 bytes, and the upper bound: U = +∞

bytes. Guess a deduplication block size: B1;

2: Step 1:
3: Generate a new compressed file f1 of B1 bytes;
4: Upload f1 to the cloud. When f1 is completely synchronized to the

cloud, record the total sync traffic: Tr1;

5: Step 2:
6: Generate another file f2 by appending f1 to itself, that is f2 = f1+

f1 (the so-called “self duplication”);
7: Upload f2 to the cloud. When f2 is completely synchronized to the

cloud, record the total sync traffic: Tr2;

8: Step 3:
9: if Tr2 � Tr1 and Tr2 is small (≈ tens of KBs) then

10: B1 is actually the deduplication block size (B);
11: exit;
12: else there are two cases
13: case 1: Tr2 < 2B1 and Tr2 is not small (implying that

B1 > B) then
14: Set B1 as the upper bound: U ← B1, and decrease the

guessing value of B1: B1 ← L+U
2

;
15: case 2: Tr2 > 2B1 (implying that B1 < B) then
16: Set B1 as the lower bound: L← B1, and increase the

guessing value of B1: B1 ← L+U
2

;
17: goto Step 1;

compress data, while Dropbox is the only service that com-
presses data for every access method.

• Web browser typically does not compress a file when upload-
ing it to the cloud storage, probably also due to the limitation-
s of JavaScript or other web-based script languages (refer to
§ 4.3). Besides, using a mobile app is usually not as efficient
as using a PC client.

5.2 Data Deduplication Granularity
[Experiment 5] : Data deduplication is another potential method
to reduce data sync traffic, with the intuition that users often upload
duplicated files with similar content. Inferring the deduplication
granularity of a cloud storage service requires some efforts, espe-
cially when the deduplication block size B (bytes) is not a power
of two (i.e., B 6= 2n, where n is a positive integer) 5. To measure
the deduplication granularity, we design and implement Algorith-
m 1 (named the “Iterative Self Duplication Algorithm”). It infers
the deduplication granularity by iteratively duplicating and upload-
ing one or multiple synthetic file(s) and meanwhile analyzing the
incurred data sync traffic. It is easy to prove that the iteration pro-
cedure can finish in O(log(B)) rounds.

First, we study inter-file data deduplication with respect to an
identical user account. By applying Experiment 5 to the six main-
stream cloud storage services, we figure out their data deduplica-
tion granularity in Table 9 (the 2nd column). In this table, “Full
file” (only for Ubuntu One) means that data deduplication only hap-
pens at the full-file level, “4 MB” (only for Dropbox) indicates that
the deduplication block sizeB = 4 MB, and “No” shows that there
is no deduplication performed. Note that block-level deduplication
naturally implies full-file deduplication, but not vice versa.

Second, we study cross-user data deduplication. For each cloud
storage service, we first upload a file f to the cloud, and then
5The deduplication block size B (bytes) is traditionally a power of
two [39], but we still have to thoughtfully consider the exception
when B 6= 2n .

Table 9: Data deduplication granularity. We do not list the
web-based case because the web-based file synchronization typ-
ically does not apply data deduplication.

Service Same user Cross users
PC client & Mobile app PC client & Mobile app

Google Drive No No
OneDrive No No
Dropbox 4 MB No
Box No No
Ubuntu One Full file Full file
SugarSync No No

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

D
e
d
u
p
lic

a
ti
o
n
 R

a
ti
o

Block Size

1
2
8
 K

B

2
5
6
 K

B

5
1
2
 K

B

1
 M

B

2
 M

B

4
 M

B

8
 M

B

1
6
 M

B

F
u
ll

fi
le

Figure 5: Deduplication ratio (cross-user) vs. Block size. Here
the deduplication ratio = Size of data before deduplication

Size of data after deduplication .

use another user account to upload f to the cloud again. In this
case, the sync traffic should be trivial if full-file deduplication is
performed across users. If the cross-user full-file deduplication is
confirmed, Experiment 5 is run again to figure out the accurate
cross-user deduplication granularity; otherwise, we can conclude
that there is no cross-user data deduplication at all. The results are
also shown in Table 9 (the 3rd column). Obviously, only Dropbox
employs a different cross-user data deduplication granularity from
the identical-user case.

From the above measurements, we get the following findings and
implications:

• A cloud storage service usually adopts the same data dedu-
plication granularity for PC clients and mobile apps, while
the web-based data synchronization typically does not apply
data deduplication.

• By analyzing our collected trace, we find that cross-user data
(block) duplication pervasively exists: even the full-file level
duplication ratio (= Size of duplicate files

Size of all files) reaches 18.8%. How-
ever, most cloud storage services do not support cross-user
deduplication (perhaps for privacy and security concerns) or
block-level deduplication at the moment, thus losing consid-
erable opportunities for optimizing TUE.

Further, we compare the two types of deduplication granularity
to answer a question: Is the block-level deduplication much bet-
ter (i.e., has a much larger deduplication ratio) than the full-file
deduplication? Since the computation complexity of block-level d-
eduplication is much higher than that of full-file deduplication, the
answer could help decide whether or not the block-level dedupli-
cation is worthwhile. Note that when referring to the “file blocks”,
we are dividing files to blocks in a simple and natural way, that is
to say, by starting from the head of a file with a fixed block size.
So clearly, we are not dividing files to blocks in the best possible
manner [19, 39] which is much more complicated and computation
intensive.

As our collected trace contains both the full-file hash codes and
the block-level (128 KB – 16 MB blocks) hash codes of each tracked
file (refer to § 3.1, Table 3), we perform the trace-driven simulation
to figure out the (cross-user) deduplication ratio when each dedupli-
cation granularity is adopted. The simulation results demonstrate
that the block-level deduplication usually exhibits trivial superior-
ity to the full-file deduplication, as shown in Figure 5. Therefore,
we have the following implication:

• For providers, in terms of deduplication granularity, support-
ing full-file deduplication is basically sufficient.

Conflicts between compression and block-level deduplication.
Although data deduplication can reduce the sync traffic, we notice
that it has a potential performance conflict with data compression.
Implementing block-level deduplication and compression together
is technically challenging.

For cloud storage service providers, though storing and deliver-
ing data in its compressed form can effectively save storage space
and sync traffic, it may significantly increase the (computation and
I/O) complexity of block-level deduplication. Specifically, after a
file (f) is delivered to the cloud storage in its compressed form (f ′),
f ′ must be first uncompressed to calculate each block’s fingerprint,
so as to enable block-level deduplication. Then, the uncompressed
file must be deleted from disk. Furthermore, the above operations
must be re-executed (in part) as long as one block of f is modified.
It is basically unwise for a service provider to shift these operations
to its user clients, unless the service provider does not care about
user experience.

In this subsection we have known that block-level deduplica-
tion exhibits trivial superiority to full-file deduplication. Mean-
while, full-file deduplication is not challenged by data compres-
sion, because full-file deduplication can be directly performed on
compressed files. Therefore, we suggest that providers implement
full-file deduplication and compression since these two techniques
work together seamlessly.

6. FREQUENT FILE MODIFICATIONS
In addition to backing up and retrieving files, cloud storage ser-

vices are also widely used for collaboration, such as collaborative
document editing, team project building, and database hosting. All
the above mentioned advanced functions involve a special kind of
file operations: frequent modifications to a file.

In § 4 and § 5, we have studied various simple file operations
that are each performed at once. On the contrary, frequent modifi-
cations imply that a file is modified in a frequent and incremental
manner. Thus, they exhibit diverse data update patterns in terms of
data update size and rate. The large-scale trace collected by Dra-
go et al. [12] reveals that for 8.5% of Dropbox users, more than
10% of their sync traffic is caused by frequent modifications [36].
Further, frequent modifications may well incur abundant overhead
traffic that far exceeds the amount of useful data update traffic sen-
t by the user client over time, which is referred to as the traffic
overuse problem [36]. Besides, in this section we will elaborate
on client locations, network environments, and hardware configu-
rations, because the TUE of frequent file modifications is largely
influenced by these factors.

6.1 Sync Deferment
[Experiment 6] : To experiment with frequent file modifications,
we append X random kilobytes to an empty file inside the sync
folder every X seconds, until the total appended bytes reach a cer-
tain sizeC (typicallyC = 1 MB). This is denoted as the “X KB/X

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10

T
U

E

X KB/X sec appending

(a) Google Drive

 0

 10

 20

 30

 40

 50

 5 10 15 20

T
U

E

X KB/X sec appending

(b) OneDrive

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9 10

T
U

E

X KB/X sec appending

(c) Ubuntu One

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 3 4 5 6 7 8 9 10

T
U

E

X KB/X sec appending

(d) Box

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10

T
U

E

X KB/X sec appending

(e) Dropbox

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10

T
U

E

X KB/X sec appending

(f) SugarSync

Figure 6: TUE of the six cloud storage services in response to controlled frequent file modifications. Note that the subfigures have
distinct Y-axes, and the (b) OneDrive subfigure has a different X-axis.

sec” appending experiment. We use random bytes since they are
difficult to compress, thus preventing file compression from influ-
encing our measurements of TUE.

Our goal is three folds by doing this experiment: 1) We observe
and understand the sync traffic and TUE in response to frequent
modifications; 2) We aim to discover whether the cloud storage
service has used the sync deferment in order to avoid or mitigate
the traffic overuse problem; and 3) If the sync deferment is adopted,
we want to measure how long the sync deferment is.

All the experiments in this section are performed using M1 @
MN (refer to Table 4) with 20 Mbps of bandwidth, and the latency
(between M1 and each cloud) is between 42 msec and 77 msec.
In terms of service access method, we only examine the PC client,
because almost all the frequent modifications are generated from
PC clients in practice 6. Experiments with other benchmarks will
be presented in § 6.2.

First, to investigate the impact of frequent file modifications on
TUE, we examine the cases forX ∈ {1, 2, · · · , 19, 20}. As depict-
ed in Figure 6, the six mainstream cloud storage services exhibit
diverse and interesting phenomena:

• Frequent modifications to a file often lead to large TUE (the
aforementioned “traffic overuse problem”). As for the six
mainstream services, the maximum TUE can reach 260, 51,
144, 75, 32, and 33, respectively.

• We observe (except in the sync defer cases: Figure 6 (a), 6
(b), and 6 (f)) that TUE generally decreases as the modifi-
cation frequency (= 1024

X
) decreases. The reason is straight-

forward: though the total data update size is always C = 1
MB, a lower data update frequency implies fewer data sync
events, and thus the overhead traffic is reduced.

A natural question is: Why are the maximum TUE values of
Google Drive (260), OneDrive (51), Ubuntu One (144), and Box
(75) much larger than those of Dropbox (32) and SugarSync (33)?
The answer can be found from their data sync granularity (refer
to § 4.3): Google Drive, OneDrive, Ubuntu One, and Box employ
full-file sync, while Dropbox and SugarSync employ block-level

6The UIs (user interfaces) of web browser and mobile apps for
cloud storage services are usually not fit for performing frequent
modifications to a file.

incremental sync which significantly improves the network-level
traffic efficiency.

On the other hand, there do exist a few cases (in Figure 6 (a),
6 (b), and 6 (f)) where TUE is close to 1.0. According to our ob-
servations, (a) Google Drive, (b) OneDrive, and (f) SugarSync deal
with the traffic overuse problem by batching file updates using a
fixed sync deferment: T seconds (which cannot be re-configured by
users). Figure 6 (a), 6 (b), and 6 (f) indicate that TGoogleDrive ∈
(3, 5) sec, TSugarSync ∈ (4, 6) sec, and TOneDrive ∈ (10, 11)
sec. Moreover, to figure out a more accurate value of T , we fur-
ther tune X from integers to floats. For example, we experiment
with X = 3.1, 3.2, · · · , 4.9 for TGoogleDrive, and then find that
TGoogleDrive ≈ 4.2 sec. Similarly, we find that TSugarSync ≈ 6
sec and TOneDrive ≈ 10.5 sec.

One may have the following question: Is it possible that the de-
ferred data synchronization of (a) Google Drive, (b) OneDrive, and
(f) SugarSync is triggered by a byte counter or an update counter
rather than the time threshold (T)? In other words, the three con-
cerned services may trigger the data synchronization once the num-
ber of uncommitted bytes or updates exceeds a certain value. This
question can be addressed in two cases:

• Case 1: If the data synchronization is triggered by a byte
counter, the resulting TUE would be close to 1.0 according
to our previous study on the byte-counter based “efficien-
t batched synchronization” (UDS) [36]. This is clearly not
true as illustrated by Figure 6 (a), 6 (b), and 6 (f).

• Case 2: If the data synchronization is triggered by an update
counter, the resulting TUE in Figure 6 (a), 6 (b), and 6 (f)
would linearly decrease as the modification period (X sec)
increases. Obviously, this is not true, either.

Therefore, we conclude that the deferred data synchronization is
not triggered by a byte counter or an update counter.

Unfortunately, fixed sync deferments are limited in terms of us-
age scenarios. As shown in Figures 6 (a), 6 (b), and 6 (f), the traffic
overuse problem still occurs when X > T .

To overcome the limitation of fixed sync deferments, we propose
an adaptive sync defer (ASD) mechanism. ASD adaptively tunes
its sync deferment (Ti) to follow the latest (say, the i-th) data up-
date. In other words, when data updates happen more frequently,
Ti gets shorter; when data updates happen less frequently, Ti gets

 0

 10

 20

 30

 40

 50

 5 10 15 20

T
U

E

X KB/X sec appending

(a) OneDrive

 @ MN
@ BJ

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 3 4 5 6 7 8 9 10

T
U

E

X KB/X sec appending

(b) Box

@ MN
@ BJ

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10

T
U

E

X KB/X sec appending

(c) Dropbox

@ MN
@ BJ

Figure 7: TUE of (a) OneDrive, (b) Box, and (c) Dropbox on handling the “X KB/X sec” appending experiment, in Minnesota (MN)
and Beijing (BJ), respectively.

 20
 22
 24
 26
 28
 30
 32
 34
 36

 0 5 10 15 20

T
U

E

Bandwidth (Mbps)

(a)

Dropbox

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

T
U

E

Latency (msec)

(b)

Dropbox

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 2 3 4 5 6 7 8 9 10

T
U

E

X KB/X sec appending

(c)

Dropbox-MN-M3
Dropbox-MN-M1
Dropbox-MN-M2

Figure 8: TUE of Dropbox on handling the (a) “1 KB/sec” appending experiment with variable bandwidths, (b) “1 KB/sec” appending
experiment with variable latencies, and (c) “X KB/X sec” appending experiment with distinct hardware configurations.

longer. In either case, Ti tends to be slightly longer than the lat-
est inter-update time, so that frequent modifications can be proper-
ly batched for synchronization (without harming user experience).
Specifically, Ti can be adapted in such an iterative manner:

Ti = min (
Ti−1

2
+

∆ti
2

+ ε, Tmax) (2)

where ∆ti is the inter-update time between the (i-1)-th and the i-th
data updates, and ε ∈ (0, 1.0) is a small constant that guarantees
Ti to be slightly longer than ∆ti in a small number of iteration
rounds. Tmax is also a constant representing the upper bound of
Ti, as a too large Ti will harm user experience by bringing about
intolerably long sync delay.

If Google Drive would utilize ASD on handling the “X KB/X
sec” (X > TGoogleDrive) appending experiments, the resulting
TUE will be close to 1.0 rather than the original 260 (X = 5), 100
(X = 6), 83 (X = 7), and so forth. The situation is similar for
OneDrive and SugarSync. More detailed performance evaluation
of ASD can be found in our previous work [37].

6.2 Impact of Network and Hardware
In this subsection, we first study the impact of network and hard-

ware on TUE, and then explore why they impact TUE.

[Experiment 7, Network environment] : To study the impact of
network environment (including both bandwidth and latency) on
TUE, we conduct the following two batches of experiments.

The first batch of experiments are performed on B1 @ BJ. It
represents a relatively poor network environment: low bandwidth
(nearly 1.6 Mbps) and long latency (between 200 msec and 480 m-
sec) relative to the cloud, because the six mainstream cloud storage
services are mainly deployed in US. After repeating Experiments
1 – 6 in this network environment, we compare the results with
the corresponding results by using M1 @ MN with abundant band-
width (nearly 20 Mbps) and short latency (between 42 msec and 77
msec), which represents a good network environment.

The second batch of experiments are performed by using M1 @
MN with controlled bandwidth (between 1.6 Mbps and 20 Mbp-
s) and latency (between 40 msec and 1000 msec), so that we are

able to get fine-grained results about how the network environment
impacts TUE.

From the two batches of experiments, we mainly get the follow-
ing findings and implications:

• TUE of a simple file operation is usually not affected by net-
work environment.

• However, in the case of frequent file modifications, a user
client with relatively low bandwidth or long latency can save
more sync traffic.

Specifically, for the first batch of experiments, we plot the TUE
of (a) OneDrive, (b) Box, and (c) Dropbox on handling the “X
KB/X sec” appending experiment in Minnesota and Beijing in Fig-
ure 7 (a), 7 (b), and 7 (c), respectively. The situation of Google
Drive and SugarSync is similar to Figure 7 (a), and the situation
of Ubuntu One looks like Figure 7 (b). In each subfigure, the two
curves (“@ MN” vs. “@ BJ”) clearly illustrate that poor network
environment leads to smaller TUE, especially when the modifica-
tion period (X sec) is short (excluding the sync defer cases).

For the second batch of experiments, as a typical example, we
plot the TUE of Dropbox on handling the “1 KB/sec” appending
experiment with variable bandwidths and latencies in Figure 8 (a)
and Figure 8 (b), respectively. In Figure 8 (a), the latency is fixed
to around 50 msec and the bandwidth is tuned from 1.6 Mbps to
20 Mbps. In Figure 8 (b), the bandwidth is fixed to around 20 Mbps
and the latency is tuned from 40 msec to 1000 msec. Obviously,
higher bandwidth or shorter latency leads to larger TUE.

[Experiment 7’, Hardware configuration] : Next, we examine
the impact of hardware configuration on TUE by repeating Experi-
ments 1 – 6 with distinct client machines: M1 (a typical machine),
M2 (an outdated machine), and M3 (an advanced machine). Their
detailed hardware information is listed in Table 4. All the experi-
ments are performed in Minnesota with abundant bandwidth (near-
ly 20 Mbps) and short latency (between 42 msec and 77 msec).

Through the Experiment 7’ results, we observe that TUE of a
simple file operation generally has no relation with hardware con-

figuration, but TUE of frequent file modifications is actually affect-
ed by hardware configuration. As a typical example, in Figure 8
(c) we plot the TUE of Dropbox on handling the “X KB/X sec”
appending experiment with M1, M2, and M3. The three curves
clearly demonstrate that slower hardware incurs less sync traffic.

Why do network environment and hardware configuration im-
pact TUE? To explore the reason why network environment and
hardware configuration impact TUE, we analyze the communica-
tion packets of data synchronization, in particular the TCP data
flows. The analysis reveals that in the presence of frequent modifi-
cations to a file, the user client does not always synchronize every
file modification to the cloud separately. Instead, the user client
often batches multiple file modifications for data synchronization.
Specifically, a new file modification (or a sequence of new file mod-
ifications) is synchronized to the cloud when at least the following
two conditions are both satisfied:

• Condition 1: The previous file modification (or the previ-
ous batch of file modifications) has been completely synchro-
nized to the cloud.

• Condition 2: The client machine has finished calculating the
latest metatata of the modified file.

As to Condition 1, when the network environment is relatively
poor, synchronizing the previous file modification (or the previous
batch of file modifications) takes more time, so the client needs to
wait for a longer period of time to synchronize the new file modi-
fication. As to Condition 2, when the client runs on top of slower
hardware, calculating the latest metatata (which is computation-
intensive) also requires a longer period of time. Because the failure
of either condition will cause the new file modification (or the se-
quence of new file modifications) to be naturally batched, poor net-
work environment or poor hardware increases the probability that
a file modification gets batched, and thereby optimizes the TUE.

Finally, combining all the findings in this subsection, we get the
following implication:

• In the case of frequent file modifications, today’s cloud stor-
age services actually bring good news (in terms of TUE) to
those users with relatively poor hardware or Internet access.

7. DISCUSSION
While this paper mainly focuses on the traffic costs of cloud stor-

age services, we keep in mind that the total costs of running a cloud
storage service also involves the computation costs, storage costs,
operation costs, and so forth. Therefore, we would like to fur-
ther study and understand the traffic usage from an insider’s point
of view. In particular, we want to quantify the tradeoff between
TUE and other system metrics. For example, regarding data sync
granularity, incremental synchronization is a double-edge sword:
It effectively saves traffic and storage compared with full-file syn-
chronization, but it also puts more computational burden on both
service providers and end users. Likewise, determining the best
data compression level to achieve a good balance between traffic,
storage, and computation deserves further research efforts.

Specifically, studying the aforementioned system tradeoffs would
require at least the following three-fold information from cloud s-
torage providers:

• The user device composition (i.e., the percentages of PCs,
tablets, and smartphones) is the most important information

required. For PCs, it is generally fine to sacrifice computa-
tion, storage, and/or network-level efficiency for better ser-
vice quality (e.g., faster synchronization of file operations).
For example, PC clients usually maintain a local sync fold-
er that stores a copy for almost every synchronized file at
the cloud side. On the other hand, smartphones are sensitive
to computation cost, storage space, and sometimes network
overhead (in 2G/3G/4G modes). Accordingly, mobile apps
usually maintain a small-size local folder that caches only a
few most recently accessed files.

• The logical interfaces of the storage infrastructure decides
the implementation difficulty and working efficiency of ID-
S (incremental data sync) for file modifications. The logical
interfaces mainly include the RESTful (full-file level) inter-
faces, file-level interfaces, and block-level interfaces. For ex-
ample, Microsoft Azure, Amazon S3, and OpenStack Swift
provide RESTful interfaces, and thus implementing IDS on
top of them is not an easy job. On the contrary, implement-
ing IDS on top of a NFS-based infrastructure (with file-level
interfaces) is quite straightforward. In addition, as GFS and
HDFS provide seemingly file-level interfaces based on block-
level infrastructure, the corresponding implementation diffi-
culty and working efficiency of IDS lie between those with
RESTful and file-level interfaces. Finally, the logical stor-
age interfaces also impact the working efficiency of BDS
(batched data sync) for small files.

• The physical devices of the storage infrastructure have non-
negligible influence on the working efficiency and imple-
mentation (monetary) costs of a cloud storage service. Obvi-
ously, a single SSD is faster while much more expensive than
a single HDD, but up to now it is still not clear which is the
most cost-effective among an SSD cluster, an HDD cluster, a
hybrid SSD+HDD cluster, or even a tape-based cluster [41].
Moreover, the performance of the filesystem can affect the
working efficiency of a cloud storage service. For instance,
OpenStack Swift works better with XFS than EXT3/EXT4,
as pointed out by the official OpenStack development doc-
ument [13]. In addition, even those seemingly independen-
t infrastructure components may share deep, hidden depen-
dencies that lead to unexpected correlated failures, thus un-
dermining the redundancy efforts and working efficiencies of
cloud storage services [46, 47].

We hope cloud storage service providers to release their propri-
etary traces to promote future research in this field.

8. RELATED WORK
As cloud storage services are becoming more pervasive and chang-

ing the way people store and share data, a number of research ef-
forts have been made in academia, including the design and im-
plementation of the service infrastructure [22, 43, 44, 31], integra-
tion services with various features and functionalities [29, 28, 23,
42, 36, 35, 34], performance measurement [33, 25, 24, 20, 45], as
well as privacy and security issues [40, 21, 38, 27, 32]. While the
previous work covers the data sync mechanism as one of the key
operations and the resulting traffic usage, none of them tries to un-
derstand the efficiency of the traffic usage comprehensively. Due
to the system complexity and implementation difference, one can
hardly form a general and unified view of the traffic usage efficien-
cy, not to mention the further improvement.

Our work is different from and complementary to previous s-
tudies by quantifying and optimizing traffic usage efficiency, the

pivotal network-level efficiency for cloud storage services. Based
on the measurements and analysis of six state-of-the-art cloud stor-
age services, we unravel the key impact factors and design choices
that may significantly affect the traffic usage efficiency. Most im-
portantly, we provide guidance and implications for both service
providers and end users to economize their sync traffic usage.

Dropbox is one of the earliest and most popular cloud storage
services, and its data sync mechanism has been studied in depth
in [25, 36]. Through an ISP-level large-scale measurement, Dra-
go et al. first uncover the performance bottlenecks of Dropbox due
to both the system architecture and the data sync mechanism [25].
They suggest a bundling sync scheme with delayed sync ACK to
improve the sync performance of Dropbox. In addition, Li et al.
identify a pathological issue that may lead to the “traffic overuse
problem” in Dropbox by uploading a large amount of unnecessary
(overhead) traffic [36]. They propose an efficient batched sync al-
gorithm (named UDS) to address this issue. Complementary to
these studies, our results are not limited to Dropbox. Instead, we
unravel the general factors that may significantly affect the data
sync traffic. In consequence, our results are more general and appli-
cable for designing network-level efficient cloud storage services,
rather than improving one particular service.

Some measurement studies have partially covered the traffic us-
age of cloud storage services. Hu et al. examine “the good, the bad
and the ugly” of four cloud storage services by comparing their traf-
fic usage, delay time, and CPU usage of uploading new files [30].
They observe that the sync traffic usage varies substantially with
factors such as file size, data compressibility, and data duplication
levels. Drago et al. further compare the system capabilities of five
cloud storage services, and find that each service has limitations
with regard to data synchronization [24]. Both of these two studies
confirm the importance of sync traffic usage, and the possibility of
further optimizing the sync traffic usage.

In this paper, we zoom into the problem towards a comprehen-
sive understanding of traffic usage efficiency. Different from the
simplified benchmarks used in the above mentioned studies [36, 30,
24], we consider the diversity of access methods, client locations,
hardware configurations, and network conditions to match the real-
world usage. Indeed, we discover that these factors lead to different
traffic usage patterns, some of which are even not expected. Last
but not the least, different from previous studies that never consider
mobile usage, one of our focus is the mobile usage of sync traffic –
mobile users are those who mostly suffer from traffic overuse.

9. CONCLUSION AND FUTURE WORK
The tremendous increase in data sync traffic has brought growing

pains to today’s cloud storage services, in terms of both infrastruc-
ture support and monetary costs. Driven by this problem, this paper
quantifies and analyzes the data sync traffic usage efficiency (TUE)
of six widely used cloud storage services, using a real-world trace
and comprehensive experiments. Our results and findings confirm
that much of the data sync traffic is unnecessary and can be avoided
or mitigated by careful design of data sync mechanisms. In other
words, there is enormous space for optimizing the network-level
efficiency of existing cloud storage services. We sincerely hope
that our work can inspire the cloud storage designers to enhance
their system and software, and meanwhile guide the users to pick
appropriate services.

In Jun. 2014, Apple Inc. announced its cloud storage service,
iCloud Drive, in its annual WWDC conference. iCloud Drive is
planned as an important component of iCloud, the popular cloud
service provided by Apple that has amassed over 300 million user-
s. Therefore, in the near future, iCloud Drive may be ranked higher

than several cloud storage services studied in this paper (e.g., Drop-
box and Box). To our knowledge, multiple groups of researchers
(including us) have been anxious to investigate the network-level
efficiency of iCloud Drive, in the hopes of harvesting novel and
interesting discoveries. Unfortunately, up to now (Aug. 2014),
the iCloud Drive service is still unavailable to common users [10].
In general, we believe that the network-level efficiency of iCloud
Drive would be a promising research topic, as iCloud Drive lives in
a unique and closed ecological system fully operated by Apple.

10. ACKNOWLEDGEMENTS
This work is supported by the High-Tech Research and Devel-

opment Program of China (“863 – China Cloud” Major Program)
under grant SQ2015AAJY1595, the National Basic Research Pro-
gram of China (“973”) under grant 2011CB302305, the China NSF
(Natural Science Foundation) under grants 61232004 and 61471217,
the China Postdoctoral Science Fund under grant 2014M550735,
and the US NSF under grants CNS-1054233, CNS-1017647, CNS-
1017092, CNS-1117536 and CRI-1305237.

We would like to thank our shepherd Theophilus Benson and our
team member He Xiao for the valuable help. We thank every vol-
unteer who contributes their data and makes our research possible.

11. REFERENCES
[1] Amazon S3 pricing policy (Jan. 2014).

http://aws.amazon.com/s3/#pricing.
[2] Bandwidth costs for cloud storage.

http://blog.dshr.org/2012/11/bandwidth-costs-for-cloud-
storage.html.

[3] Bandwidth limitations are a concern with cloud backup.
http://searchdatabackup.techtarget.com/video/Bandwidth-
limitations-are-a-concern-with-cloud-backup.

[4] Cisco Global Cloud Index: Forecast and Methodology,
2012-2017. Trend 3: Remote Data Services and Storage
Access Services Growth.
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525
/ns537/ns705/ns1175/Cloud_Index_White_Paper.html.

[5] Dirty Secrets: 5 Weaknesses of Cloud Storage Gateways.
http://www.nasuni.com/blog/28-
dirty_secrets_5_weaknesses_of_cloud_storage.

[6] Dropbox Is Now The Data Fabric Tying Together Devices
For 100M Registered Users Who Save 1B Files A Day.
http://techcrunch.com/2012/11/13/dropbox-100-million.

[7] Google Drive Now Has 10 Million Users: Available on iOS
and Chrome OS. http://techcrunch.com/2012/06/28/google-
drive-now-has-10-million-users-available-on-ios-and-
chrome-os-offline-editing-in-docs.

[8] Hidden Costs of Cloud Storage.
http://www.onlinefilestorage.com/hidden-costs-of-cloud-
storage-1756.

[9] How fast is SkyDrive (OneDrive) growing?
http://www.liveside.net/2012/10/27/how-fast-is-skydrive-
growing.

[10] iCloud Drive features preview.
http://www.apple.com/ios/ios8/icloud-drive.

[11] JavaScript Tutorials, Refernces, and Documentation.
http://developer.mozilla.org/en-US/docs/Web/javascript.

[12] Large-scale Dropbox trace collected at the ISP level.
http://traces.simpleweb.org/wiki/Dropbox_Traces.

[13] OpenStack Installation Guide for Ubuntu 12.04/14.04 (LTS).
http://docs.openstack.org/icehouse/install-
guide/install/apt/content.

[14] PUE (Power Usage Effectiveness).
http://en.wikipedia.org/wiki/Power_usage_effectiveness.

[15] A question about the default chunk size of rsync.
http://lists.samba.org/archive/rsync/2001-
November/000595.html.

[16] rsync web site. http://www.samba.org/rsync.
[17] Why RESTful Design for Cloud is Best.

http://www.redhat.com/promo/summit/2010/presentations
/cloud/fri/galder-945-why-
RESTful/RestfulDesignJBWRH2010.pdf.

[18] Wireshark network protocol analyzer.
http://www.wireshark.org.

[19] B. Aggarwal, A. Akella, A. Anand, A. Balachandran,
P. Chitnis, C. Muthukrishnan, R. Ramjee, and G. Varghese.
EndRE: An End-system Redundancy Elimination Service for
Enterprises. In Proc. of NSDI, pages 419–432. USENIX,
2010.

[20] A. Bergen, Y. Coady, and R. McGeer. Client Bandwidth: The
Forgotten Metric of Online Storage Providers. In Proc. of
PacRim, pages 543–548. IEEE, 2011.

[21] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. DepSky: Dependable and Secure Storage in a
Cloud-of-clouds. ACM Transactions on Storage (TOS),
9(4):12, 2013.

[22] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, et al. Windows Azure Storage: A
Highly Available Cloud Storage Service with Strong
Consistency. In Proc. of SOSP, pages 143–157. ACM, 2011.

[23] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz. Design
Implications for Enterprise Storage Systems via
Multi-dimensional Trace Analysis. In Proc. of SOSP, pages
43–56. ACM, 2011.

[24] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras.
Benchmarking Personal Cloud Storage. In Proc. of IMC,
pages 205–212. ACM, 2013.

[25] I. Drago, M. Mellia, M.M Munafò, A. Sperotto, R. Sadre,
and A. Pras. Inside Dropbox: Understanding Personal Cloud
Storage Services. In Proc. of IMC, pages 481–494. ACM,
2012.

[26] R.T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[27] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg.
Proofs of Ownership in Remote Storage Systems. In Proc. of
CCS, pages 491–500. ACM, 2011.

[28] D. Harnik, R. Kat, D. Sotnikov, A. Traeger, and O. Margalit.
To Zip or Not to Zip: Effective Resource Usage for
Real-Time Compression. In Proc. of FAST, pages 229–242.
USENIX, 2013.

[29] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side Channels
in Cloud Services: Deduplication in Cloud Storage. IEEE
Security & Privacy, 8(6):40–47, 2010.

[30] W. Hu, T. Yang, and J.N. Matthews. The Good, the Bad and
the Ugly of Consumer Cloud Storage. ACM SIGOPS
Operating Systems Review, 44(3):110–115, 2010.

[31] Y. Huang, Z. Li, G. Liu, and Y. Dai. Cloud Download: Using
Cloud Utilities to Achieve High-quality Content Distribution
for Unpopular Videos. In Proc. of ACM Multimedia, pages
213–222. ACM, 2011.

[32] D. Kholia and P. Wegrzyn. Looking Inside the (Drop) box. In
Proc. of the 7th USENIX Workshop on Offensive
Technologies (WOOT), 2013.

[33] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp:
Comparing Public Cloud Providers. In Proc. of IMC, pages
1–14. ACM, 2010.

[34] Z. Li, Y. Huang, G. Liu, F. Wang, Z.-L. Zhang, and Y. Dai.
Cloud Transcoder: Bridging the Format and Resolution Gap
between Internet Videos and Mobile Devices. In Proc. of
NOSSDAV, pages 33–38. ACM, 2012.

[35] Z. Li and J. Li. Deficiency of Scientific Research behind the
Price War of Cloud Storage Services. Communications of
China Computer Federation (CCCF), 10(8):36–41, 2014.

[36] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B.Y. Zhao, C. Jin, Z.-L.
Zhang, and Y. Dai. Efficient Batched Synchronization in
Dropbox-like Cloud Storage Services. In Proc. of
Middleware, pages 307–327. Springer, 2013.

[37] Z. Li, Z.-L. Zhang, and Y. Dai. Coarse-grained Cloud
Synchronization Mechanism Design May Lead to Severe
Traffic Overuse. Elsevier Journal of Tsinghua Science and
Technology, 18(3):286–297, 2013.

[38] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud Storage with
Minimal Trust. ACM Transactions on Computer Systems
(TOCS), 29(4):12, 2011.

[39] D.T. Meyer and W.J. Bolosky. A Study of Practical
Deduplication. ACM Transactions on Storage (TOS),
7(4):14, 2012.

[40] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and
E. Weippl. Dark Clouds on the Horizon: Using Cloud
Storage as Attack Vector and Online Slack Space. In Proc. of
USENIX Security, 2011.

[41] V.S. Prakash, X. Zhao, Y. Wen, and W. Shi. Back to the
Future: Using Magnetic Tapes in Cloud Based Storage
Infrastructures. In Proc. of Middleware, pages 328–347.
Springer, 2013.

[42] P. Shilane, M. Huang, G. Wallace, and W. Hsu.
WAN-optimized Replication of Backup Datasets using
Stream-informed Delta Compression. ACM Transactions on
Storage (TOS), 8(4):13, 2012.

[43] M. Vrable, S. Savage, and G.M. Voelker. Cumulus:
Filesystem Backup to the Cloud. ACM Transactions on
Storage (TOS), 5(4):14, 2009.

[44] M. Vrable, S. Savage, and G.M. Voelker. Bluesky: A
Cloud-backed File System for the Enterprise. In Proc. of
FAST. USENIX, 2012.

[45] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu. Characteristics of Backup
Workloads in Production Systems. In Proc. of FAST.
USENIX, 2012.

[46] E. Zhai, R. Chen, D.I. Wolinsky, and B. Ford. An Untold
Story of Redundant Clouds: Making Your Service
Deployment Truly Reliable. In Proc. of HotDep. ACM, 2013.

[47] E. Zhai, R. Chen, D.I. Wolinsky, and B. Ford. Heading Off
Correlated Failures through Independence-as-a-Service. In
Proc. of OSDI. USENIX, 2014.

[48] Y. Zhang, C. Dragga, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. ViewBox: Integrating Local File
Systems with Cloud Storage Services. In Proc. of FAST,
pages 119–132. USENIX, 2014.

	Introduction
	Common Design Framework of Cloud Storage Services
	Methodology
	Real-world Cloud Storage Trace
	Benchmark Experiments
	Overview of Our Major Findings

	Simple File Operations
	File Creation
	File Deletion
	File Modification and Sync Granularity

	Compression and Deduplication
	Data Compression Level
	Data Deduplication Granularity

	Frequent File Modifications
	Sync Deferment
	Impact of Network and Hardware

	Discussion
	Related Work
	Conclusion and Future Work
	ACKNOWLEDGEMENTS
	References

